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A B S T R A C T

For decades anatomic imaging with computed tomography or magnetic resonance imaging has facilitated drug
development in medical oncology by providing quantifiable and objective evidence of response to cancer
therapy. In recent years metabolic imaging with [18F]fluorodeoxyglucose–positron emission tomography has
added an important component to the oncologist’s armamentarium for earlier detection of response that is
now widely used and appreciated. These modalities along with ultrasound and optical imaging (biolumines-
cence, fluorescence, near-infrared imaging, multispectral imaging) have become used increasingly in preclin-
ical studies in animal models to document the effects of genetic alterations on cancer progression or
metastases, the detection of minimal residual disease, and response to various therapeutics including
radiation, chemotherapy, or biologic agents. The field of molecular imaging offers potential to deliver a variety
of probes that can image noninvasively drug targets, drug distribution, cancer gene expression, cell surface
receptor or oncoprotein levels, and biomarker predictors of prognosis, therapeutic response, or failure. Some
applications are best suited to accelerate preclinical anticancer drug development, whereas other technologies
may be directly transferable to the clinic. Efforts are underway to apply noninvasive in vivo imaging to specific
preclinical or clinical problems to accelerate progress in the field. Because resources are limited, and patient
suffering from failed or ineffective therapy continues, a concerted effort is being made to address these
issues. Many simultaneous activities involving academia; the pharmaceutical, device, and biotechnology
industries; US Food and Drug Administration; National Cancer Institute; Centers for Medicare and Medicaid
Services; and specialized networks sponsored by the National Institutes of Health are beginning to address
these issues to develop consensus recommendations and progress in this important area.

J Clin Oncol 24:3261-3273.

INTRODUCTION

The 5-year survival from the most common cancers
affecting people living in the United States has
changed little in the last two decades, with some
notable exceptions.1 According to 2005 American
Cancer Society data, the death rate per 100,000 peo-
ple from cancer in the United States was 193.9 in
1950 and 193.4 in 2002. Although molecularly tar-
geted therapy has provided some promise in the last
few years, it has become clear that all too commonly
the impact on survival is limited due to drug resis-
tance and disease progression.2-5 Although intensive
efforts continue to develop strategies to reverse re-
sistance, significant progress has been made in im-
proving survival by earlier detection of breast and
colon cancer, allowing surgery and adjuvant thera-
pies with associated better outcomes at an earlier stage
of disease. Another area where progress has been made
is with use of neoadjuvant therapies to allow response
before surgery and additional therapies. In all cases
imaginghasbeencrucial forstagingaswellasmonitor-
ing response to therapy.6 Molecular imaging has great
potential to become incorporated into the drug devel-
opment and monitoring process (Table 1).7,8

In recent years, advances in the molecular un-
derstanding of cancer pathogenesis have allowed ad-

ditional insights into the determinants of disease
progression and therapeutic response. For nearly a
decade comprehensive gene expression profiling has
been defining molecular signatures that have yet to
find their way into standard clinical practice with
rapid turnaround at an affordable price.9 In the
same way that serum markers of disease (eg, alpha-
fetoprotein, carcinoembryonic antigen, CA-125, or
lactate dehydrogenase) assist clinicians in monitor-
ing disease burden or therapeutic response in real
time, analysis through imaging of molecular
changes within human tumors in vivo offers the
opportunity for earlier modifications of therapy
based on assessment of prognostic or therapeutic
determinants. Such imaging will greatly comple-
ment assessments based on tissue pathology,
genomics, and the emerging field of serum pro-
teomics.10 Imaging technology can detect noninva-
sively specific molecular changes associated with the
presence of early malignant disease, disease recur-
rence, or likelihood of response or the lack thereof
to continued therapy. These advances also have
great potential to accelerate drug development in
the clinic by allowing the testing of new therapeu-
tics earlier in many patients based on knowledge
of specific molecular alterations, and by providing
earlier predictive information regarding response
to therapy.
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Considerable progress has been made in the in vitro and preclin-
ical development of molecular imaging agents. Small molecule imag-
ing agents that can detect specific proteins or nucleic acids within
living human cells, including mutant oncoproteins, have been stud-
ied, and some progress has been made in preclinical models.11 Anti-
body therapeutics represent a class for which imaging is particularly
promising. Cell surface receptors, such as those bound by epidermal
growth factor or vascular endothelial growth factor (VEGF), offer
opportunities for antibody-mediated target imaging as well as radio-
chemical or other cargo delivery directly to the malignant cells or their
vascular supply.12-14 Molecularly targeted agents that bind tightly to
kinase active sites or other targets within tumor cells provide another
approach for target imaging after conjugation to radioisotopes or
optical imaging agents.15-17

In the preclinical area, using the same applications discussed
above, imaging provides a powerful tool for every aspect of the drug
development process. This includes using the ability to image molec-
ular changes to design targeted screens for identification of candidate
small molecule therapeutics (Fig 1).18 It also includes the development
of animal models of human tumors that can allow drug target valida-
tion as well as monitoring of therapeutic efficacy in tumors with
different combinations of genetic alterations.19,20 Such information
can be efficiently obtained from animal models in preclinical testing
and can be extremely useful as in vivo molecularly targeted imaging in
cancer patients evolves to a point where the presence of the same
targets can be visualized. Bioluminescence is particularly useful in
preclinical drug development strategies because of its ability to image
gene transcription or protein-protein interactions as well as tumor
volume or tumor microenvironment.21-25 These techniques should
allow cell-based drug screens targeting specific molecular changes
relevant to tumor progression or therapeutic resistance to become
amenable to high-throughput approaches. In addition to molecular
targets such as deregulated oncogenes, their oncoprotein products,
and tumor suppressor genes, the expression or function of which is
deficient in human cancers, imaging offers the opportunity to detect
other important aspects of tumor progression including metabolic or
physiologic changes, vascular changes, or tumor cell death. Changes in
gene expression and protein levels after therapy that can be detected
noninvasively through imaging offer additional opportunities to de-
velop tests for prognostic or therapeutic monitoring.

At the clinical level, the value of molecular imaging has also
become evident. Target imaging can be extremely helpful in determin-
ing why a therapy is working or not working, in addition to a potential
clinical use in stratifying patients to receive or not receive a spe-
cific therapeutic agent based on imaging of the therapeutic target.
Combining molecular target imaging with other biomarker determi-
nants of prognosis or therapeutic response is likely to increase predic-
tive value for decision making because of tumor heterogeneity as well

Table 1. Promise of Imaging Science

Features of imaging
Noninvasive, optical biopsy
Sequential/multiple sampling
Quantitative localization
Molecular target expression

Levels
Patterns

Applications
Screening/early detection
Early diagnosis
Staging and therapy monitoring
Drug development tool

Molecular target–based drug screening
Imaging of drug biodistribution, in 3D and within tumor microenvironment
Target-based validation in animal models
Imaging of drug-target interaction in vivo
Coregister drug distribution with drug target expression
Coregister drug distribution with drug effect

Fig 1. Imaging target activation in live cell-based assay. (A) CP-31398; (B-E) CP-31398 derivatives were found to activate p53 family signaling in the nanomolar range of drug
concentration suggesting potential use of lower doses in efficacy studies. The color gradient at the right shows relative light units (RLUs). Data are from reference 18.
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as the predilection of cancers to evolve genetic or epigenetic alterations
to evade therapy. Such strategies include classical anatomic imaging
techniques combined with novel functional imaging approaches,
including coregistration between computed tomography (CT) or
magnetic resonance imaging (MRI) and [18F]fluorodeoxyglucose–
positron emission tomography or fluorothymidine–positron emission
tomography,26-32 the latter measuring cell proliferation, which is a down-
stream effect mediated by molecular targets.

For the newer imaging probes developed for specific molecular
targets, formidable developmental hurdles still exist for their clinical
use. For example, delivery of adequate tracer to the target to allow
noninvasive visualization is often a problem. Radiotracer labeling is
not readily available for most of the new drugs, and in those instances
where labeled drugs are available, delivery to the target at concentra-
tions adequate for noninvasive visualization is still not often possible.
There are many factors that contribute to successful probe develop-
ment, as listed in Table 2.7

MOLECULAR TARGETS FOR ANTICANCER DRUG DEVELOPMENT

Overview

A number of well-defined genetic alterations contribute to the
immortalization, transformation, and progression of human
cancers.33-35 These include telomerase activation, overexpression or
mutation of a number of cellular oncogenes, loss, hypermethylation
or mutation of tumor suppressor genes, cell cycle deregulation, sup-
pression of apoptosis, angiogenesis, activation of proteases that pro-
mote invasion and metastasis, and evasion of the host immune system.
All of these alterations provide molecular targets that are potential
candidates for imaging (Table 3). Classically, transformation involves
changes in cell shape, loss of contact inhibition in monolayer cell
culture, and anchorage-independent growth in soft agar. In vivo,
transformed cells acquire the ability to form tumors in immunocom-
promised mice. The host immune system provides a powerful tumor
suppressor mechanism through the action of the tumor necrosis fac-
tor family of cytotoxic ligands and cytotoxic T cells, whereas immune
suppression contributes to cancer development.

Inflammation has become increasingly recognized as a contrib-
utor to cancer development, and components of the stroma also
support tumor growth and survival.36 A number of tyrosine kinase cell

surface receptors promote cell proliferation and survival, and include
ErbB2/HER2/neu, epidermal growth factor receptor (EGFR) and
insulin-like growth factor receptor. These receptors trigger a number
of intracellular signaling cascades including the RAS-RAF-MAPK-
ERK-c-JUN(RASoncogeneproduct–v-RAFmurinesarcomaviralonco-
gene homolog product–mitogen-activated protein kinase–extracellular
signal-regulated kinase–v-JUN avian sarcoma virus 17 oncogene ho-
molog product–phosphatidylinositol-3-kinase–thymoma viral proto-
oncogene product, also known as protein kinase B) and PI3K-AKT
pathways.37,38 The RAS pathway ultimately influences cell prolifera-
tion and cell migration, whereas the AKT pathway leads to cell sur-
vival. Targets of AKT include MDM2 (mouse double minute 2
homolog), mTOR (mammalian target of rapamycin), p27, p21, Fork-
head, and others that promote cell survival and proliferation. In addi-
tion to gene amplification, which can increase gene copy number and
gene expression (for example, in the case of HER-2/neu or EGFR),
mutations frequently lead to oncogene activation. The RAS genes are
mutated frequently in human cancer, including colon cancer, adeno-
carcinoma of the pancreas and esophagus, among many others. v-Myc
avain myelocytomatosis viral oncogene homolog product (c-MYC) is
frequently overexpressed or mutated in epithelial malignancies and is
involved in activating chromosomal translocations in hematopoietic
malignancies such as Burkitt’s lymphoma. One of the hallmarks of
cancer is genomic instability, which remains poorly understood but
could provide a key target for therapy in the future.39-41 Microsatellite
instability has been linked to mutations or silencing of mismatch repair
genes and cancer development in both inherited (hereditary nonpolypo-
sis colorectal cancer) and sporadic tumors.42

Colon Cancer

Colorectal cancer provides one of the best-understood models of
human cancer progression because the progressive lesions have been
accessible for histochemical and molecular analysis, and genetic stud-
ies have led to the identification of important genes and target path-
ways.43 The earliest change involves mutations of the adenomatous
polyposis coli (APC) gene located on human chromosome 5q. APC
mutations lead to familial adenomatous polyposis and are also found
frequently in sporadic colorectal cancers. APC gene mutation leads to
release of oncogenic �-catenin suppression that normally leads to its
proteasomal degradation in the cytoplasm. APC mutation or
�-catenin mutation can target increased levels of �-catenin to the

Table 2. Considerations for Successful Probe Development

Targets have low nanomolar to micromolar concentrations
Intracellular delivery usually necessary
Amplification of signal-to-noise ratio usually necessary
Imaging probes should have a mass in tissues in a range of 0.1 to 0.01 of the target concentration so as not to exert mass or pharmacologic effects
Probe must have low nonspecific binding
Washout of probe must be sufficiently slow to allow accumulation at target site, but rapid enough to provide adequate target to background contrast
Imaging probe development often occurs late in the drug development process
Probe development requires rigorous pharmacokinetics characterization
Radiolabeling can change the binding properties of small molecular probes
Metabolites of the radiolabeled probe can lead to inaccurate ADME of the probe
Pharmacokinetics characterization can be essential to evaluating kinetic models that reflect the target
Peptides afford specificity and binding affinity, but are cleared and degraded rapidly
Antibodies afford specificity and binding affinity but can cause immunogenic reactions

Abbreviation: ADME, absorption/distribution/metabolism/excretion.
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nucleus to associate with T-cell factor transcription factors and acti-
vate growth-promoting genes such as c-MYC or cyclin D. APC muta-
tions promote polyp formation, but for colorectal cancer and
metastases to occur, additional events are involved. For colorectal
cancers todevelop, theadditionalwell-knownevents includemethylation
changes, RAS gene mutations, mutations in the P53 tumor suppressor
gene on chromosome 17p, or alterations on chromosome 18q that in-
volve thedeleted inpancreaticcancergene(DPC4)or thedeleted incolon
cancergene(DCC);overexpressionofthephosphatasegenePRL3hasalso
been associated with metastases from colorectal cancer.44,45

Angiogenesis is another important contributor to colorectal can-
cer progression, and recently the US Food and Drug Administration
approved the antibody bevacizumab (Avastin; Genentech, South San
Francisco, CA), which targets VEGF, for use with irinotecan, fluorou-
racil, and leucovorin as first-line therapy in advanced colorectal cancer
due to a highly significant prolongation in patient survival in this
patient population.46 Deregulation of cell cycle control and altered
topological expression of cyclin-dependent kinase (CDK) inhibitors
such as p21 (WAF1/CIP1) occur in polyps and carcinomas.47

Cyclooxygenase-2 (COX-2) and prostaglandins contribute to colorec-
tal cancer and COX-2 inhibitors have been shown to reduce polyp
number and size. Recent studies have implicated �-catenin as a medi-
ator in COX-2 signaling pathways and prostaglandin E2 mediation of
colon cancer.48 In addition to DPC4, the transforming growth factor-�
pathwayhasbeenimplicatedincolorectalcancerthroughmutationofthe

RIIreceptorinmismatchrepair–deficienttumors.49 Suchtumorsarealso
prone to developing BAX gene mutations or loss of expression.50 Al-
though BAX mutations have not been shown to be initiating events in
colorectal cancer, they can contribute to resistance to therapy.

Molecular Targets in Specific Tumor Types

A number of molecular targets are found in several tumor types
as well as those that are unique or highly relevant to specific tumor
types. Chromosomal translocations that arise as a consequence of
genomic instability or DNA repair defects contribute to the formation
of oncogenic fusion proteins that provide ideal targets for therapy.
These fusion protein targets include Ewing sarcoma–Friend leukemia
virus integration fusion gene product (EWS-FLI) in Ewing’s sarco-
ma51 and BCR-ABL in chronic myelocytic leukemia,52 among others.
Mutations in the lipid and protein phosphatase and tensin homologue
deleted on chromosome 10 (PTEN) occur commonly in brain tu-
mors, prostate, and other tumors. PTEN mutations lead to PI3K-
mediated activation of oncogenic AKT.53 AKT can also become
activated through the action of a number of oncogenic tyrosine kinase
receptors including HER-2/neu54 and EGFR.55 EGFR frequently is
overexpressed in a wide range of tumors including non–small-cell
lung cancer (NSCLC), esophageal cancer, and colorectal cancer. An
oncogenic isoform of EGFR is found solely in gliomas, and this iso-
form, EGFR vIII, represents a unique target in that tumor type.56,57

EGFR mutations have been found in approximately 10% of NSCLC,

Table 3. Molecular Target Candidates for Molecular Probe Development

HER-2/neu (erbB-2) BCR-ABL APC HDACs
EGFR (erbB-1) RAS BRCA1, BRCA2 CpG islands
EGFRviii B-RAF P53 COX-2
erbB-1/erbB-2 MEK MDM2 RAR�

Pan-erbB ERK P27 RXR
VEGF PI3K/AKT P21 RXR/RAR
VEGFR c-KIT Forkhead Snail
IGFR TGF� �-Catenin Slug
PDGFR NF�B DCC iNOS
TNF mTOR c-MYC ER
Death receptors Proteasome c-JUN AR
CHK-2 Hsp90 CDKs/cyclins Aromatase
IAP1, IAP2 HIF-1� DPC4 PPAR�

BAX E2F1 PARP PRL3
BCL/BCLXL Integrins ATM hTERT
Caspases Metalloproteinases EWS-FLI
XIAP Proteases PTEN
FLIP NBS
Decoy receptors TCFs

Abbreviations: HER-2, human epidermal growth factor receptor 2; BCR-ABL, breakpoint cluster region—Abelson murine leukemia fusion protein; APC,
adenomatous polyposis coli tumor suppressor; HDAC, histone deactylace; EGFR, epidermal growth factor receptor; CpG, cytosine phosphate guanine; B-RAF, v-RAF
murine sarcoma vital oncogene homolog B1 product; COX-2, cyclo-oxygenase-2; MEK, mitogen-activated protein kinase; MDM2, mouse double minute 2, human
homolog of p53 binding protein; RAR�, mitogen activated protein kinase; MDM2, mouse double minute 2, human homolog of p53 binding protein; ERK, extracellular
signal-regulated kinase; RXR, retinoic X receptor; VEGF, vascular endothelial growth factor; AKT, thymoma viral proto-oncogene product, also known as protein
kinase B; VEGFR, vascular endothelial growth factor receptor; c-KIT, v-KIT Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog product; IGFR, insulin-like
growth factor receptor; TGF-�, transforming growth factor beta; PDGFR, platelet-derived growth factor receptor; NF�B, nuclear factor kappa B; DCC, tumor
suppressor gene deleted in colon cancer; iNOS, induced nitric oxide synthase; TNF, tumor necrosis factor; mTOR, mammalian target of rapamycin; c-MYC, v-MYC
avian myelocytomatosis viral oncogene homolog product; ER, estrogen receptor; c-JUN, v-JUN avian sarcoma virus 17 oncogene homolog product; AR, androgen
receptor; CHK-2, checkpoint-like protein-2 (serine/threonine kinase); CDK, cyclin-dependent kinase; IAP, inhibitor of apoptosis; HIF, hypoxia-inducible factor; DPC4,
deleted in pancreatic carcinoma locus 4; PPAR�, peroxisome proliferator-activated receptor �; BAX, B-cell protein-2 (BCL2)-associated X protein; E2F1, E2F
transcription factor 1, a retinoblastoma tumor suppressor binding protein; PAPR, poly(adenosine diphospate-ribose) polymerase; BCL, B-cell protein-2 (facilitator of
apoptosis); BCLXL, extracellular BCL protein; ATM, ataxia telangiectasia mutated gene product; hTERT, human telomerase reverse transcriptase; EWS-FLI, Ewing
sarcoma-Friend leukemia virus integration fusion gene product; XIAP, X-linked inhibitor of apoptosis protein; PTEN, phosphatase and tensin homologue deleted on
chromosome 10; FLIP, FLICE (FADD [FAS-associated death domain]-like interleukin-1�-converting enzyme)-like inhibitory protein; NBS, Nijmegen breakage
syndrome; TCF, T-cell factor.
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in the subgroup of patients that have shown objective responses to the
kinase inhibitors gefitinib (Iressa; AstraZeneca, London, UK) or erlo-
tinib (Tarceva; OSI Pharmaceutials Inc, Melville, NY).58 BRAF gene
mutations frequently are found in melanoma, and targeted therapy
has been developed against the RAF kinase. Interestingly, the RAF
kinase inhibitor sorafenib was approved in 2005 for therapy of renal
cell cancers, where it appears to have antiangiogenic effects through
additional kinase targets including a VEGF receptor.59 RAS mutations
are extremely common in pancreatic cancer, and farnesyl transferase
inhibitors have been developed to block their activity in this target
organ. Because RAS mutations are also common in other tumor types,
farnesyl transferase inhibitors are being tested alone or in combination
therapies in many tumor types.60

Importance of DNA Repair Defects

In addition to mismatch repair defects that occur in colorectal
tumors,61 other repair defects contribute to cancer development and
provide additional molecular targets for therapeutic development.
Mutations in the XP genes occur in xeroderma pigmentosum and
contribute to cancer susceptibility.62 Cells from xeroderma pigmen-
tosum patients are actually also more susceptible to being killed by
DNA-damaging therapeutics. Mutations in the BRCA1 and BRCA2
genes occur in hereditary breast cancer and result in defective repair
that is mediated through homologous recombination.63 BRCA1-
deficient cells have high sensitivity to ionizing radiation and DNA-
damaging chemotherapeutics such as cisplatin. BRCA2-deficient cells
have been identified in Fanconi anemia and have been found to be
sensitive to mitomycin.64 In pancreatic cancer, BRCA2 mutations
have been described, and alterations in other Fanconi genes have also
been found to correlate with mitomycin sensitivity due to repair
defects.65 Sonic hedgehog has been proposed as a target for therapy in
pancreatic and other cancers.66 Recently PARP inhibitors have been
proposed for clinical testing in BRCA2-deficient tumors.67 ATM gene
mutations that occur in the cancer-prone ataxia telangiectasia syn-
drome, NBS mutations in Nijmegin breakage syndrome, and CHK2
and P53 mutations in Li-Fraumeni syndrome affect the DNA damage
response and repair pathways that can promote tumor formation and
altered sensitivity to therapy.68

Some Universal Targets

Activation of nuclear factor kappa B (NF�B) signaling has been
widely observed in human cancer and can contribute to resistance to
therapy.69 NF�B activation results in transcription of genes that pro-
mote cell survival and cell proliferation. NF�B transcriptional targets
include the prosurvival genes that produce IAP (inhibitor of apopto-
sis) 1, IAP2, and BCLXL (extracellular B-cell protein), as well as the cell
cycle regulatory gene cyclin D1. Both NF�B and its transcriptionally
activated genes represent molecular targets for therapeutic develop-
ment. Proteasome inhibitors including bortezomib (Velcade; Mille-
nium Pharmaceuticals, Cambridge, MA), which is approved for
treating multiple myeloma,70 ultimately inhibit the degradation of
I�B (inhibitor of �B), which normally keeps NF�B in the cytoplasm
and inactive with regard to transcriptional activation. Another univer-
sal target is the hypoxia-inducible factor (HIF) that is involved in
transcriptional activation of genes that promote cell survival in re-
sponse to hypoxic stress.71 Targets of HIF include erythropoietin, the
glucose transporter Glut1, and VEGF, which promotes angiogenesis
and tumor survival. Histone deacetylases have also been targeted in
recent years for therapy in cancer with histone deacetylase inhibi-

tors.72 An emerging target for therapy is micro-RNA, the
overexpression of which can modulate gene expression and con-
tribute to oncogenic transformation.73

A number of additional targets exist that are the subjects of
ongoing efforts for drug targeting. Cell cycle deregulation is a
hallmark of cancer, and provides several therapeutic targets, in-
cluding CDKs (CDK4, CDK2, cdc2) as well as E2F1 (E2F transcrip-
tion factor 1). Tumor cells have increased E2F1 activity, and an
E2F1 promoter driving a suicide gene has been proposed as a
therapeutic agent.74 The epithelial-to-mesenchymal transition that
has been observed in vivo as tumors gain invasive and metastatic
potential provides another opportunity for therapeutic interven-
tion. Transcription factors such as Snail or Slug have been implicated in
epithelial-to-mesenchymal transition and may predict clinical out-
come.75 Integrins, chemokine receptors, and matrix metalloproteases
provide additional therapeutic targets in cancer.76

IMAGING IN DIFFERENT PHASES OF DRUG DEVELOPMENT

Drug Screening

Virtually every gene or protein target relevant to cancer develop-
ment, progression, or therapeutic response can be exploited in thera-
peutic design through approaches involving molecular imaging.
Noninvasive optical imaging provides a platform for cell-based assays
with high sensitivity, high throughput capability, and the potential to
modulate molecular events using small molecules or other types of
therapeutic agents (Figs 1 and 2).

Various luciferase genes including firefly luciferase and Renilla
luciferase encode proteins that use distinct substrates such as
D-luciferin and coelenterazine, respectively, resulting in light emis-
sion. Introduction of constitutively active or gene-specific promoter-
driven luciferase genes into cells allows for screening of modulation of
cell number or transcriptional activity.80 Because a number of targets
in cancer are transcription factors, including HIF, p53, NF�B,
�-catenin, and other oncogenic transcription factors such as those
that result from chromosomal translocations, it is possible to identify
activators or blockers to modulate therapeutic response.18,20,81,82

The technology exists to use in vivo imaging to detect protein-
protein interactions based on reporter reconstitution through the
bringing together of split domains or through designs similar to mam-
malian two-hybrid strategies.83 There are also strategies that rely on
bioluminescence resonance energy transfer.23 Such imaging makes it
possible to identify small molecules that can promote or disrupt
protein-protein interactions for therapeutic gain.24,84 In addition, a
number of oncogenic proteins require interaction with other cel-
lular proteins to signal cell proliferation, survival, or tumor pro-
gression. Disruption of these interactions is expected to lead to
growth arrest, cell death, or tumor regression. Dual-reporter de-
signs make it possible to monitor and manipulate multiple events
simultaneously (Fig 3).21,85

Imaging of CDK2 activity and its inhibition has been possible
through the use of a p27-luciferase fusion that is degraded on phos-
phorylation by CDK2.86 Accumulation of bioluminescence in vivo
has been demonstrated after exposure of tumor cells to the CDK
inhibitors flavopiridol or roscovitine. The approach used illus-
trates how a drug target that affects the stability of another protein
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that can be imaged may be used to identify or investigate the effects
of target inhibition.86

It is also possible to use imaging to screen for activators of
apoptosis, for example, using the binding of fluorescent quantum
dot-tagged annexin V to the cell surface of dying cells or through use of
DEVD-modified amino-luciferin to detect caspase 3 activation in
response to candidate small molecule therapeutics.77,78,87 Molecular
beacons, either DNA based or peptide based, can be used to identify
small molecules with potential to alter gene expression (Fig 4) or
enzymatic activity, including caspase or protease activity.89,90 A
cathepsin-sensitive probe has been described to detect increased ca-
thepsin activity associated with colonic polyps and carcinomas.88 Such
a fluorescent or near-infrared probe can also be used to help identify
inhibitors of cathepsin activity that may have therapeutic utility.

Genetic approaches can be used at the screening stage to control
for a specific molecular target of interest in a particular screen.19 In
addition, if the target of interest for disruption by a small molecule is
an inhibitor of apoptosis such as XIAP (X-linked inhibior of apopto-
sis) or BCLXL, use of siRNA (small interfering RNA) can facilitate
analysis of genetically matched cells except for the target of interest
that is affected by the small molecules in a particular screen. As such,
imaging can be used to compare rapidly the matched cell lines in a
high-throughput screen.

It is difficult to overstate the impact of noninvasive imaging of
molecular events in tumor cells on translational research and drug
development research, beginning with the small molecule-screening
phase. Visualization of molecular events and their modulation by

candidate therapeutics can be performed with several thousand com-
pounds simultaneously providing an image of the results that can be
analyzed qualitatively or quantitatively before additional screening or
validation. Multiple 96-well plates can be analyzed simultaneously at
specific time points and over several days to follow the effects of
candidate small molecules on target pathways or cell viability.18

Preclinical Testing

Noninvasive in vivo imaging offers great potential to facilitate
translational drug development research at the animal testing phase.
With some information about the maximum-tolerated dose of a given
small molecule, one can begin to test efficacy in animal models of
human cancer. In this regard, National Cancer Institute (NCI) data-
bases contain toxicity information for thousands of compounds that
have been tested during the last two decades.

There are a number of available models for preclinical efficacy
testing. Classically, tumor xenografts growing either subcutaneously
or orthotopically in immunodeficient mice have been used to investi-
gate the effects of candidate therapeutics on tumor growth or tumor
regression. There are also syngeneic models that rely on mouse tumors
that grow in immunocompetent mice. All of these models are amena-
ble to the use of noninvasive optical imaging using biolumines-
cence or fluorescence to assess tumor volume. Although the
imaging has some limitations (for example, there is lower signal
obtained from deeper tumors), there are predictable relationships
between cell number, tumor volume, and optical signal.20 Per-
forming controlled experiments and obtaining multiple images
longitudinally provides reliable information regarding response to
therapy; at the same time, money on animal costs is saved because
fewer animals are required.

With xenograft models it is possible to obtain information using
multiple reporters to evaluate tumor volume as well as effects on the
molecular target of interest.19,21,91 This is useful because molecularly
targeted therapy often ends up affecting additional targets in vivo. A
good example is the antiangiogenic effect of the recently approved
RAF kinase inhibitor in renal cell cancer. The use of multiple reporters
also offers the potential to monitor molecular changes within tumors,
including aspects of the tumor microenvironment that may be rele-
vant to therapeutic response.

A number of transgenic mouse models have emerged in recent
years that may also be useful for testing therapeutics. Some of the
models include knockouts of various tumor suppressor genes (eg,
P53, mismatch repair MSH2, APC, VHL, and p16/Arf knockouts).
There are also tissue-specific knockouts of tumor suppressor genes
such as BRCA1 or PTEN, among many others.92-94 Other trans-
genics include tissue-specific oncogene activation (eg, RAS activa-
tion in the lung or pancreas, with or without mutant p53
expression),95-99 or various oncogenes activated in the mammary
gland, including HER-2/neu, RAS, MYC, or cyclin D1.100,101 Sev-
eral of the transgenic models offer the potential to turn off the
oncogenic signal to determine effects on tumor maintenance or
ultimate resistance to therapy.102-105 Two applications have been
described where imaging was performed in transgenic mice. Dele-
tion of the Rb tumor suppressor gene in the pituitary was per-
formed in cells that only expressed luciferase in the Rb-deficient
state, and so pituitary tumors could be imaged and the effects
of therapeutics could be tested.106 A second example involved
transplantation of constitutive luciferase-expressing tumor cells

Fig 2. Acridine derivatives were found to activate p53 family signaling suggest-
ing a novel molecular target. The color gradient at the right shows relative light
units. Data are from reference 18. ADR, adriamycin; AMSA, amsacrine or 4'-(9-A
cridinylamino)-3'-methoxymethanesulfonanilide; CP-1 and -2 and CP-31398, acri-
dine analogs.

El-Deiry, Sigman, and Kelloff

3266 JOURNAL OF CLINICAL ONCOLOGY

Copyright © 2006 by the American Society of Clinical Oncology. All rights reserved. 
Downloaded from www.jco.org on July 10, 2006 . For personal use only. No other uses without permission. 



from an inducible MYC-transgenic model into mice that did not
express luciferase.107

It is important to realize the limitations of transgenic models
when they are used for therapeutic testing. A particular genetic alter-
ation, although it leads to tumor development in mice, may only
mimic rare situations in humans, and the tumors may lack the envi-
ronmental influences as well as genomic instability associated with
human cancers. The transgenic models include a limited number of
genetic alterations in specific cell types. The order of events and their

occurrence in specific cell types in humans in vivo is the subject of
intensive investigation, and the role of such alterations in stem cells
and tumor cells is still being unraveled. The technology exists to
validate transgenic mouse models further with respect to their rele-
vance to human cancer with all its genetic and epigenetic alterations.
Human cancer is complex and different from mouse cancer in its
pathogenesis, and thus it is likely that all available models will continue
to be evaluated in the coming years in therapeutic testing. It is clear
that useful information can be obtained from the simpler xenograft

Fig 3. Fluorescence imaging of apoptosis
in human tumor cells using Annexin
tagged with Q-dots. (A-B) Human wild-type
(wt) or mutant I�B expressing Jurkat cells
were untreated (A) or treated (B) with
TRAIL, stained with Q-dot tagged Annexin
V and analyzed by flow cytometry. Brightly
fluorescent cells are enclosed in a box and
quantified (%). (C) Fluorescence cell-based
imaging of the same cells in A-B using
fluorescently tagged Annexin V as indi-
cated. Data are from reference 87. I�B,
inhibitor of �B; TRAIL, tumor necrosis
factor–related apoptosis-induced ligand.
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models before investing in extensive preclinical development, given
that agents that are not efficacious in these models are unlikely to be
useful in humans.

Efforts have been underway to image physiologic parameters
within tumor masses exposed to therapeutic agents in vivo. Tumor
vasculature has been imaged after exposure of syngeneic tumors to
antiangiogenic agents using ultrasound to detect blood flow.108,109

Classical methods including CT, MRI, and more recently positron
emission tomography (PET) imaging are providing extremely valu-
able information regarding tumor volume, tumor response, and the
metabolic state of the treated tumors. Coregistration of various
methods (for example, combining anatomic imaging, such as CT,
with functional imaging, such as PET) is currently under investi-

gation to determine the most efficient use of multiple methods for
specific applications. Integration of genetic approaches in the pre-
clinical testing phase is useful for target validation, just as it is in the
screening phase.

Noninvasive imaging technologies offer applications that can be
used to gain additional information in preclinical models. These in-
clude imaging drug targets in tumors or normal tissues and the devel-
opment of in vivo assays for imaging drug toxicity. Some progress has
been made recently toward fluorescence-based imaging of apoptosis
in response to therapy in freshly resected human colon.110 This ap-
proach provides some indication of sensitivity and feasibility of doing
this type of imaging endoscopically in living human patients. The ap-
proach also provides a unique reference point for toxicity determination

Fig 5. Fluorescence imaging of apoptosis
in freshly-resected human colon. Human
ascending colon explants were either
untreated (A), treated with 200 �g/mL
fluorouracil for 24 hours (B), 100 ng/mL
TRAIL for 18 hours (C), or the combination
of FU plus TRAIL (D). Bright field (upper
panels), propidium iodide (middle panels),
or FLICA (FITC-VAD-FMK; lower panels)
stained images were obtained. Data are
from reference 110. FU, fluorouracil;
FLICA, fluorochrome-labeled inhibitors of
caspases (eg, FITC, fluoroscein reactive
isothiocyanate; VAD, valine, aspartic acid,
dexamethasone; FMK, fluoromethylketone);
TRAIL,tumornecrosisfactor–relatedapoptosis-
inducing ligand; Ad, adenovirus.

Fig 4. Cell-based bioluminescence imaging
of apoptosis using DEVD-aminoluciferin.
p53�/� HCT116 colon cancer cells were
untreated or treated with various doses of
TRAIL (as indicated) for 6 hours and apopto-
sis was imaged following incubation of the
cells in the presence of DEVD-aminoluciferin.
Cleavage of DEVD by TRAIL-activated cas-
pases releases luciferin that is then used
by luciferase as a substrate to emit biolu-
minescence that is imaged. Data are from
reference 77. TRAIL, tumor necrosis
factor–related apoptosis-inducing ligand.
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and may complement other existing approaches that rely on cell lines
or xenografts. Other applications involve imaging of minimal residual
disease in transplantable mouse models, and are important in under-
standing drug efficacy and resistance mechanisms.79

Clinical Trials

Classical imaging methods using x-rays, ultrasound, bone
scans, PET scans, CT scans, or MRI are widely used by clinicians in
clinical trials and in clinical practice. Anatomic imaging has been
possible for many years and provides a basis to document objective
response to therapy. However, one of the major limitations in
current imaging strategies is that significant periods of time often
must elapse while patients are treated for two to three cycles of

chemotherapy before it is possible to document objective re-
sponses. The field of molecular imaging offers strategies that in the
future may provide scans that can detect molecular events shortly
after therapy and that can predict response or resistance to thera-
py.6,7 At present, there are some serum markers, such as alpha-
fetoprotein, lactate dehydrogenase, CA-125, immunoglobulin,
prostate-specific antigen, or carcinoembryonic antigen, that are
useful in monitoring therapeutic response when they are elevated
in specific cancer types. However, for the majority of the common
tumors, including lung cancer, breast cancer, CNS cancer, or a
large fraction of colorectal cancers, there are no serum markers that
can assist with response monitoring acutely after therapy. Clearly,

Fig 6. Imaging drug molecular target ac-
tivation in vivo. Imaging gene expression
before (A) or after (B) gene delivery into an
estabished human tumor xenograft. A mo-
lecular response due to tumor suppressor
gene delivery by adenovirus into one of
four (arrow) established tumors is evident
(B) as a bright bioluminescence signal
emitted due to transcriptional activation in
the injected tumor. The color gradient at
the right shows relative light units. Data
are from reference 20.

Fig 7. In vivo imaging of endogenous
tumor suppressor p53-dependent tran-
scriptional activity after systemic delivery
of CPT11 (C). A dual-reporter in vivo exper-
iment was performed to image tumor vol-
ume (lower panels) using a renilla luciferase
reporter or chemotherapy-modulated tran-
scriptional activity (upper panels) using a
firefly luciferase gene regulated by the
endogenous p53 stablized by CPT11. Un-
treated control tumors (A-B) or treated
tumors lacking the drug target (D) are
shown. The color gradients at the right
show relative light units. Data are from
reference 21.
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as the field of serum proteomics progresses there will be an inter-
face between serum biomarkers and imaging technologies that can
complement each other in response detection.

Current approaches to use optical imaging in humans to
monitor therapeutic response involve the use of near-IR imaging
to detect oxy- and deoxy-hemoglobin, fat, and water content in
breast tissue in patients that have received chemotherapy for ad-
vanced breast cancer.111-113 There are early indications that such
imaging may provide useful adjunctive information that appears
worth additional testing in larger patient cohorts.114 Such method-
ologies are being combined with classical methods including MRI
or mammography, where coregistration offers additional impor-
tant information.

Endoscopic approaches are being developed to image changes in
the surface or subsurface epithelium throughout the GI tract. Using
such fluorescence imaging technologies that incorporate fluorescent
probes and specialized microscopes attached to fiberoptic devices of
endoscopes, it is possible to image normal as well as neoplastic epithe-
lium in the esophagus and colon.115 Molecular beacons have potential
for transferability to the clinic to image molecular changes associated
with the potential to respond to therapy. Photodynamic therapy is an
important area for which probes are being developed. Probes that can
be activated by the tumor cells or the tumor microenvironment offer
the potential for targeted therapy using light and photosensitizers.116-

118 Molecular imaging is furthest away from current clinical use, in
part because few probes are available and the predictive molecular
changes are still being discovered.7,90

OBSTACLES TO DRUG DEVELOPMENT AND HOW IMAGING
MAY FACILITATE

The emergence of molecular imaging technologies offers great poten-
tial to facilitate drug discovery and development research. As de-
scribed above there are numerous pathogenetic targets that are
cancer-specific that can be exploited by novel therapeutics. However,
this process requires multidisciplinary interactions and some collabo-
ration between academia and industry to take advantages of resources
and strengths offered by each. A recent NCI Network for Translational
Research in Optical Imaging workshop on imaging and drug develop-
ment included a session on drug discovery and preclinical develop-
ment that addressed the current status of the field including
perspectives from both academia and industry. It is clear that signifi-
cant progress is being made within academia to develop screening
assays that rely on imaging, as well as animal models that rely on
noninvasive imaging, for drug testing and development. Nonetheless,
within academia progress has been slow, in part because of limited
resources, limited infrastructure, limited tools/models, and the gen-
eral complexity of cancer. Pharmaceutical companies are using small
animal imaging for drug development, although interaction and col-
laboration with academia has been limited. From industry there is
greater emphasis on decision-relevant measurements, and there is a
point of view that the impact of imaging, particularly optical imaging,
is not yet clear. Even within industry, resources have limited develop-
ment to a few therapeutic targets due to the high cost associated with
performing large-scale clinical trials.

Fig 8. Principle of fluorescence emission
from an activatable molecular beacon that
senses gene induction. When the quenched
beacon (left) hybridizes with its target
mRNA, it opens up separating the quencher
from the fluorophor (right) resulting in fluo-
rescence emission.

Fig 9. Imaging gene expression changes
in response to chemotherapy exposure of
human cancer cells. A p21-specific molec-
ular beacon emitted fluorescence (B) after
8 hours of adriamycin treatment of lung
cancer cells, as compared to untreated
cells (A). The goal of this approach is to
develop a cocktail of beacons that can
predict response to therapy based on mo-
lecular events occurring in cells prior to
death. Results are from reference 90.
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Some of the barriers to clinical translation include a diversity of
imaging platforms with little standardization across testing sites or
even among the different platforms at a given site. Probe development
is a major issue with respect to clinical translation and acceleration of
the drug approval process. Although it is acknowledged that imaging
could be extremely helpful in accelerating the process of drug ap-
proval, for example by assisting with target validation, safety, and
efficacy studies, there is a need for demonstration projects to docu-
ment use of imaging at the various stages of drug development. It is
also clear that more informed design of clinical trials could save bil-
lions of dollars that could be used to develop additional targets by
better selection of patients who are more likely to benefit from specific
therapies. For example, if only the 10% of patients with NSCLC who
carry EGFR mutations are tested in clinical trials with EGFR kinase
inhibitors, 90% of the patients who do not respond could be spared
the time lost and the costs associated with ineffective therapy.

Investigators can access a number of resources for assistance with
drug discovery and development research, including development
and use of imaging approaches. The NCI has a number of grant
programs that can assist with several aspects of drug discovery up to
clinical testing, including Molecular Libraries Screening Networks,
Network for Translational Research in Optical Imaging, In Vivo Cel-
lular and Molecular Imaging Centers, and the Small Animal Imaging
Research Program. The Developmental Therapeutics Program at the
NCI has several hundred thousand chemical compounds that are
available to investigators interested in screening to identify small mol-
ecules that can modulate molecular targets in cancer for therapy.
There are existing databases that include toxicity profiles against the
panel of 60 tumor cell lines from the NCI, gene expression profiles,
and information about toxicity in mice. The Rapid Access to NCI
Discovery Resources program provides assistance with discovery
through assay development, computer modeling, protein production,
chemical analog generation, and toxicity information, and the Devel-
opment of Clinical Imaging Drug Enhancers program provides simi-
lar resources for development of molecular imaging probes and
contrast agents. The NCI Rapid Access to Intervention Development
programs assist with translation to the clinic, including providing
materials synthesized using Good Manufacturing Processes, formula-
tion research, pharmacologic methods, and investigational new drug–
directed toxicology.

With regard to development of imaging approaches through
multidisciplinary interactions to facilitate translational research, the
NCI and US Food and Drug Administration have been working to-
gether in the Interagency Oncology Task Force and more recently on
the Oncology Biomarker Qualification Initiative. In addition, the NCI
in 2005 formed an Imaging and Drug Development Working Group
to address the barriers to using imaging in drug development research
from discovery to clinical use. These activities place integration of
imaging approaches as a high priority, and ways to optimize use of
imaging in translational research on cancer are being developed. This
includes strategies to increase support for drug development and
imaging research, as well as involvement of professional societies such
as the American Society of Clinical Oncology, American Association
for Cancer Research, and other stakeholders including academia,
pharmaceutical companies, device industry, and government agencies
(US Food and Drug Administration, as well as NCI and its various
programs including the Cancer Imaging, Specialized Program of Re-
search Excellence, Developmental Therapeutics, and Cancer Therapy
Evaluation Programs), all of which represent important resources to
achieve these goals.

In summary, molecular imaging offers great potential to acceler-
ate drug discovery and development for the benefit of cancer patients.
This includes the development of numerous cell-based assays for
molecularly targeted therapy and their use in high-throughput screens
that rely on noninvasive optical imaging. This also includes the devel-
opment of molecular probes for imaging cancer drug targets; imaging
drug-binding to its target(s) in vivo; imaging molecular determinants
of therapeutic response after administration of therapy; and imaging
activation of specific pathways, such as those associated with cell
proliferation and cell survival, or physiologic changes associated
with response, such as decreased vascular supply. A number of
obstacles to progress in these areas, including the rapid and effi-
cient integration of imaging technologies within all aspects of the
drug discovery and development process, have been identified and
effortsareunderwaytoaddresstheobstaclestofacilitatetranslationaldrug
development research on cancer. It is clear that in the future imaging will
play a greater role in the drug approval process, given that target imaging
and validation are becoming increasingly important at earlier stages of
efficient drug development and clinical translation.
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